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We study the evolution of the completely asymmetric simple exclusion process 
in one dimension, with particles moving only to the right, for initial configura- 
tions corresponding to average density p_ (p+) left (right) of the origin, 
p ~< p +. The microscopic shock position is identified by introducing a "second- 
class" particle. Results indicate that the shock profile is stable, and that the 
distribution as seen from the shock position N(t) tends, as time increases, to a 
limiting distribution, which is locally close to an equilibrium distribution far 
from the shock. Moreover N(t) ~ V- t, with V= 1 - p - p+, as predicted, and 
the dispersion of N(t), a2(t), behaves linearly, for not too small values of 
p+ - p  , i.e., a2(t)~ S. t, where S is equal, up to a scaling factor, to the value 
SWA predicted in the weakly asymmetric case. For p + = p we find agreement 
with the conjecture a2(t) ~. S .  t 4/3. 

KEY WORDS: Infinite-particle system; shock waves; asymmetric simple- 
exclusion process; zero-range process. 

1. I N T R O D U C T I O N  

The  m o d e l  s tudy  of mic roscop ic  s i tua t ions  tha t  c o r r e s p o n d  to shock  wave 

so lu t ions  of the  Burgers  e q u a t i o n  is a n  i m p o r t a n t  tool  in  inves t iga t ing  the 

p h e n o m e n o n  of pers is tence  a n d  p r o p a g a t i o n  of shock  waves. O n e  w o u l d  
l ike to u n d e r s t a n d  to w h a t  ex ten t  it m a k e s  sense to speak of  shocks  at  the 

mic roscop ic  level. The  n a t u r a l  q u e s t i o n s  are:  w h a t  does  the profile of  a 

typical  m ic roscop ic  s i t u a t i o n  look  l ike? to wha t  ex ten t  can  we speak of a 
mic roscop ic  shock pos i t i on?  a n d  wha t  is the  mic roscop ic  s tate  like in a 

n e i g h b o r h o o d  of  tha t  p o s i t i o n ?  
F o r  the s imple  exc lus ion  m o d e l  pa r t i a l  m a t h e m a t i c a l  resul ts  have been  

obtained,(1  7) b u t  they are far f rom g iv ing  us a sa t is factory  p ic ture  of 
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microscopic shock situations. A computer experiment was performed 
recently for a probabilistic cellular automaton which, like the simple 
exclusion model, contains an exclusion rule, and leads in the appropriate 
limit to the Burgers equation. (8) The results show that the microscopic 
configurations are in accordance, in the average, with the shock profile 
predicted by the Burgers equation. However, they do not allow conclusions 
on microscopic localization and persistence of the shock. 

The purpose of the present work is to investigate b y  a computer 
experiment the localization and stability of microscopic shocks in the 
simple exclusion model. We consider only the completely asymmetric case: 
particles can jump only to the right. We find that by properly defining the 
miscroscopic shock position, as described below, the miscroscopic shock 
profile is stable in time. 

To make the formulation of our results more clear, we first introduce 
the process. The one-dimensional simple exclusion (s.e.) process is 
described as follows. At each site of ~ there is an exponential clock, i.e., 
a Poisson distributon of time with intensity 1. Clocks at different sites 
are independent. When the clock rings, the particle at that site chooses 
right or left with probabilities p and 1 - p ,  respectively, and jumps if the 
neighboring site is empty. If the neighboring site is occupied, nothing 
happens. We consider only the completely asymmetric case for which p = 1. 
The one-dimensional s.e. process is a Markov process with state space 
E = { 0 ,  1) z. The set of the extreme stationary translation-invariant 
measures is the set of the translation-invariant Bernoulli measures. For 
precise definitions and results the reader is referred to ref. 9. 

Let us consider an initial configuration obtained by locating particles 
at the negative (positive) sites [i.e., left (right) of the origin] independently 
with probability p_ (p +), i.e., a typical configuration of the product state 
P ( ; - ) xP  (+) where P(+) (P(o~)) is a Bernoulli state with density p (p+) p +  ~ p +  

on the negative (positive) sites. We take p < p + in order that the blocking 
effect which generates the shock may occur. At time 0 we have a shock, 
which is clearly visible if we take averages, since it corresponds to a jump 
p + - p _  in the occupation density at the site O. Now the problem arises of 
keeping track of the microscopic shock position as time goes on. Suppose 
that we change the initial situation by locating at the negative empty sites 
"second-class particles" with density (p + - p  ) / ( 1 - p _  ), independentlY at 
each empty site. The dynamics of the second class (s.c.) particles is defined 
in such a way that they do not influence the motion of the previous, "first- 
class," particles: when the clock rings at a site occupied by a first-class 
particle, the particle jumps if the site at its right is either empty or occupied 
by a s.c. particle. In the second case the two particles exchange sites. When 
the clock rings at a site occupied by a s.c. particle, the particle jumps only 
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if the neighboring site is empty. Note that no s.c. particle can ever over- 
come a first-class one. Second-class particles have been introduced in 
studying the s.e. process as a technical device to describe a particular 
coupling of the process (see, for instance, ref. 3). 

If we do not distinguish between first- and second-class particles, the 
evolution of our configuration is just the evolution of a typical equilibrium 
configuration corresponding to the density p +. It is natural to think that 
the position of the first (rightmost) s.c. particle coincides with a discon- 
tinuity in the density of first-class particles, and hence can be identified 
with the shock position. To simplify computation, it is enough to add just 
one second-class particle at the origin at time 0 (to be called the s.c. 
particle). This we can do also when p + - - p _ ,  though the procedure of 
adding extra particles with density p + - p  does not make sense. We 
speak of shock also in this case, though it is a somewhat different 
phenomenon. 

Our way of locating the microscopic shock position turns out to work: 
the profile of the average occupation numbers around that position has a 
sharp break, which is stable in time. When speaking of shock position at 
time t we always intend the position at time t of the s.c. particle located at 
0 at time 0, which is equal to the algebraic number of jumps N(t) (i.e., 
number of forward jumps minus number of backward jumps) performed by 
the s.c. particle. 

Since we follow the shock position, we are actually considering a 
different process, the process "as seen from the s.c. particle." When the s.c. 
particle jumps, we relable the sites in such a way that it is always at 0. 

We report here results obtained for fixed p § = 0.6 and several values 
of p_ ~< p+.  Changing the parameters does not lead to qualitatively new 
results, provided that p_ > 0. Our results can be summarized as follows. 

For all values of p_  the shock profile is stable around the shock posi- 
tion, and, moreover, computer results indicate that the local distribution of 
the occupation numbers at the sites close to the shock tends, as time grows, 
to a limiting distribution, which is the limiting distribution for the process 
as seen from the shock position. The distribution tends locally to the 
Bernoulli distribution with parameters p+ ,  p_ when we move away from 
the shock in the positive or negative directions. The falloff of the average 
occupation number profile to p+ ,  p_  as we move away from the shock 
is in agreement with predictions obtained by assuming some form of 
clustering for the limiting distribution. (Comparison with those predictions 
has been suggested to us by H. Spohn.) The faUoff in the site position k 
should be exponential for p+ > p _ ,  and power law ( l /k)  for p+ = p  
(Section 2). 

The drift velocity of the shock is known to be equal to 
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1 - p  + - p _  ,(~o) and computer results are in very good agreement with this 
value. For  the dispersion of the shock position a2(t) computer results 
indicate that it behaves linearly in t in the range 0 ~< p_  </~ for some 
0.5 </~ < 0.6. Moreover, in this range the coefficient S -  lira, ~ 0o EaZ(t)/t] 
turns out to be equal, within the error range, to 

(1 - p +  -p _ ) (p +  + p _ ) + 2 p + p  
Swa = (1.1) 

p+ - - p _  

which, apart from a scaling factor, is the expression found for the weakly 
asymmetric simple exclusion process. (2) 

For  p + = p = 0.6 the growth of O'2(t) is faster and data are in agree- 
ment with the expected behavior a2( t )=  0(t4/3), (12) indicating the existence 
of long-range time correlations. 

In the intermediate region 0.5 < p_ <0.6 computer results seem to 
indicate a growth of a2(t) faster than t. The analysis of the transition region 
is, however, time-consuming and we are not able at present to draw 
definite conclusions. 

2. C O M P U T E R  S I M U L A T I O N  

To perform computer simulations, it is convenient to use isomorphism 
of the simple exclusion process to the zero-range process (see, for instance, 
ref. 4 and references quoted there). The isomorphism is easily described in 
our case. The occupation number ~k(t) of the zero-range process at site k 
and at time t is the number of empty sites between the k th  particle (labeled 
from the origin) and the (k + 1)th. When the kth particle jumps forward in 
the s.e. process, a zero-range particle jumps backward, i.e., ~k--* ~ k - 1 ,  
~k-1--" ~ k -1+  1. When the second-class particle jumps backward (i.e., it 
exchanges places with a real one) 4o takes the value of ~ 1, which is zero, 
and all ~k take the value ~k-~, i.e., the whole configuration is shifted to the 
right. 

We obtain an asymmetric zero-range process with state space N z. (9) 
The set of its extreme invariant measures is described as follows. (u) 
Occupation numbers at different sites are independent, and geometrically 
distributed with some parameter p e (0, 1 ), i.e., P(~k = s ) =  p(1 - p ) ' .  This is 
the transform of the Bernoulli invariant measure of the simple exclusion 
process with parameter p. 

We construct an initial zero-range configuration in the segment 
[--L1, L2] in the following way. Occupation numbers are given independ- 
ently at each site, according to a geometric distribution with parameter p + 
( p )  in the segment [-0, L2] ([L~, - 1 ] ) .  We add a "source" at L2 +  1 to 
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simulate incoming zero-range particles. The evolution is realized as follows. 
Let {~j(T)}~_LI denote the occupation numbers at step T. At the next 
step T +  1 the computer provides a realization k of a random variable with 
integer values, uniformly distributed in the range I - L 1 ,  L 2 +  1], and, if 
k ~ ( - L 1 , L 2 ]  and ~k(T)>0, performs the operations ~ k ( T + l ) =  
~k(T)-- 1 and ~ _ I ( T +  1 ) = ~ k _ l ( T ) +  1. If k =  - L 1 ,  the only change is 
~_r , (T+l)=4 Lx(T)--I if ~_cI(T)>0.  If k = L 2 + l ,  then with proba- 
bility p+ nothing happens and with probability l - p + ,  ~L2(T+I )=  
~L2(T) + 1. All other occupation numbers are unchanged. If k =  - 1  and 
~. _I(T) = 0, then ~k(T+ 1) = ~k- ~(T), k e ( - L 1 ,  L2], and ~-L~ is generated 
as for the initial configuration. 

Our time variable t is given by the number of steps divided by 
L1 + L2 A- 2: t = T/(LI + L 2 "4- 2). Before taking any measure we always let 
the system evolve for a time t o = 100,000, in order to make sure that we are 
close to the stationary limiting distribution. 

For all results reported in this paper L1 = L2 = L. The influence of the 
finite length is estimated by comparing results for different values of L. 
Typically, L is considered large enough when by doubling it the result 
changes by less than 1%. The same empirical rule has been sometimes used 
for the length of time intervals over which averages are taken. The values 
of L and the averaging time are always indicated in the figure captions. 

One should also discuss the influence of the mechanism which 
generates the random numbers. A detailed discussion of this point is, 
however, out of place in this paper. We assume throughout that the 
random number generation is "perfect." As a check, one can look at the 
behavior of the fluctuations of the averages N(t)/t around the expected 
value, which should fall off as 1 /v / t  for parameter values for which the 
central limit theorem is expected to hold. For p_ =0.2, p+ =0.6 the 
behavior is shown in Fig. 4 (Section 4). 

The basic quantities we compute are the following. (i) The joint prob- 
ability distributions ofs sites kl ..... ks, Pkl,...,ks(Jt ..... Js) =- P(~kl =Jl  ,-.-, ~k, =J,), 
which are computed by taking time averages of the corresponding charac- 
teristic functions. (ii) N(t), the algebraic number of jumps of the second- 
class particle in the simple exclusion process up to time t. This is computed 
in terms of the zero-range process as follows: when the occupation number 
of ~o decreases by one, we add + 1, and when the configuration is shifted 
to the right, we add - 1 .  

Reconstruction of probabilities for the s.e. process from the computed 
quantities Pkl,...k,(Jl ..... Js) is made by using the inverse transformation. 
This does not introduce further errors since any occupation probability for 
the s.e. process involves only a finite sum over the zero-range probabilities 
eke,..., k,(Jl ..... J~)- 
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Data were taken using a Microvax computer at the Centro di Calcolo 
of the University of Camerino and the CRAY X-MP/12 of CINECA, 
Bologna. 

3. SHOCK STRUCTURE AND LIMITING DISTRIBUTION 

We denote by ~/k ~ {0, 1 } the value of the s.c. process at site k (counted 
from the shock position). The computer results for the asymptotic average 
occupation numbers E~/k are shown in Fig. 1 for p + = 0.6, p_  = 0.4, and 
p+ = p _  =0.6, in the range - 4 0 < k < 4 0 .  

It is useful to compare the results shown in Fig. 1 with theoretical 
predictions obtained under obvious clustering and stationarity assumptions. 
In the stationary regime the average number of particles in the interval 
(0, L ]  is constant, so the average incoming and outcoming flows are equal. 
L should be considered very large, i.e., we are actually taking the limit 
L ~ ~ ,  so that we can assume that the local distribution near L is given 
by the equilibrium measure with parameter p +, and is independent of q l, 
r/_ 1. It is readily seen that the rate at which particles enter in the interval 
at 0 is Er/_l,  and the net rate at which particles get out of it at L is 
p + Et/ 1 "~ J0 + ( 1  - p + ) - p + (1 - Er/1), so that we get the equation 

p +E~/_I + p + ( 1  - p + ) = p + ( 1  -- E~/1) + Er/_ 1 (3.1a) 

The balance in the interval I - -L ,  0) gives, similarly, 

p_Er l _ ]+  p (1 - -  p _  ) = p _  (1 - -  E r / , )  + E r / _  1 (3 .1b )  

i i i  

uJ 
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Fig. 1. Average occupation numbers for the s.c. process as seen from the shock position. 
Averaging time 3 - 10  6. Here L = 60. 
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Solving for the forward and backward jump rates a =  1 - E q l  and 
b=E~/ 1, we g e t a = l + p + p _ - p + - p _ , b = p + p _ ,  or 

E t / l = p +  + p _ ( 1 - p + )  

E t l _ l = p  --  p ( l - - p + )  

which is in very good agreement with the results shown in Fig. 1. 
The difference of the forward and the backward jump rates gives the 

drift, i.e., the asymptotics of the average value E N ( t ) / t  for t ~ co, which is 
a - b =  l - p +  - p _  = V ( p _  , p + ), as it should be. (1~ 

When we move away from the shock position the local distribution 
should tend to the equilibrium one, and, in particular, occupation numbers 
at different sites should become independent. Figure 2 shows the variation 
distance between the computed joint distribution for two neighboring sites, 
k, k + 1 for k > 1, and k -  1, k, for k ~< - 1, and the product of binomial 
distributions with the computed parameters E~/k, Eqk+l (Eqk_ t, Eqk), as a 
function of k. We recall that the variation distance between the joint 
distributions P1, P2 of two random variables taking values 0, 1 is given by 

IPI(j , ,  J2) - P2(Jl, J2)l Var(Pl,  P2) - 2Jl =o/2=o 

The results show that approximate independence holds already fairly 
close to the shock position, and it is established earlier for p+ =0.6, 
p_ = 0.4 than for equal densities p + = p _  = 0.6. 

Assuming that the two-site joint distribution approximately factorizes 
already for values of k for which the average Pk = Et/k is still significantly 
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Fig. 2. Variation distance between joint distribution and product distribution for neigh- 
boring sites for p + = 0.6 and p_  = 0.4, 0.6. Averaging time 3.106. Here L = 60. 



618 Bo ld r igh in i  e t  al.  

different from the asymptotic values p +, p _ ,  the decay of the asymptotic 
profile can be predicted using again balance arguments. Equating incoming 
and outcoming rates for the interval [k, L), k > 0, where again we take 
L ~ ~ ,  we get, in analogy with Eq�9 (3.1a), 

pkb+p+a+p~(1 - -pk+l )=pk+lb+p+(1- -p+)+ap+ 

so that, setting 6~ = P k - P  +, we get the recursion relation (a + Pk)6k+1 = 
(b + 1 - p +) &k. If p_  < p +, we can neglect 6k with respect to p + for large 
k and we get 6k+1 =ark with a = ( 1  + p + p _ - p + ) / ( 1  + p + p _ - p _ ) ,  i.e., 
6k falls off exponentially, 6~ x a ~. If p_ = p + = p, we find instead 

C 
6k+ 1 - 6k c + 6 k  

where c = 1 + p 2  p. Setting 6k = c(Sk + 1)/k, we find the recursion relation 
S~+ 1 = Sk/(1 + l/k) which implies Sk ~ 0 for k ~ ~ ,  i.e., asymptotically 
6~ ~ c/k. 

For p =0.4, p+ =0.6 the data show definitely exponential decay 
rather then power law; the slope of log 6k versus k in the range 5 ~< k ~< 32, 
computed by a linear best fit, is -0.115,  indicating a behavior of the type 
~k with e = 0.89, to be compared to the predicted value e = 0.76. For better 
agreement one should presumably take larger values of k. 

For  p + = p_  = 0.6 the decay of 6k as k grows is slower, as shown by 
Fig 1. A linear best fit of 6k versus 1/k in the range 15 ~< k ~< 35, shown in 
Fig. 3, indicates excellent agreement with the predicted c/k behavior. The 
computed slope turns out to be 0.755, very close to the predicted value 
0.76. 
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Fig. 3. Plot of 6~ versus 1/k. Averaging time 3.106. Here L = 60. 
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4. DRIFT  V E L O C I T Y  A N D  D ISPERSION.  
C O M P A R I S O N  W I T H  T H E O R E T I C A L  RESULTS 

As mentioned above, the drift velocity of the shock wave is known to 
be equal to V(p_, p § 1 - p  + -  p_. Numerically this is computed by 
taking the average N(t)/t. The dispersion of the jump number is more dif- 
ficult to compute, since one should take ensemble averages over different 
initial conditions distributed according to the stationary distribution. We 
have discarded such a procedure, since it would consume too much 
computer time. Instead, we estimate the dispersion of the jump number 
a2(r) = E ( N ( r ) -  V. ~)2 by the ergodic average 

1 M - l [  N(M'~) ]  2 M  (4.1) 
a2(M; ~) = ~  k~_o N(kz, (k + l ) r) 

where N(t,, t2) is the number of jumps in the time interval (tl, t2). We are 
actually interested in the behavior of a2(r) for large r. A linear behavior in 
~: o-2(r) ~ S(p +, p_) r indicates strong decay of time correlations for the 
process N(t), and hence validity of the CLT for (1/x/~) N(r) [N(~)-- 
N(z) - V- ~]. To estimate how far o'2(M, "c) is from its average value ~r2(~), 
observe that the difference can be written as 

1 

A a 2 ( M ; r ) - a 2 ( M ; r ) - a 2 ( r ) = ~  (Nk)2-- E(Nk) 2 (4.2) 
k ~ 0  

where 

N k - N ( k z , ( k + l ) r )  N(M.v__. ), N k - N ( k r , ( k + l ) z ) - V . r  
M 

By adding and subtracting (Nk) 2, we get 

1 M-1 ~ 2 r-N(M.T) ]2 Aa2(M;V)=Mk~=O {[(Nk)2--E(Uk) ]}--k M V.r_ (4.3) 

If there is fast decay of correlations, the last term on the rhs of Eq. (4.3) 
is O(z/M) and i s negligible with respect to the first one, since for large r 

1 M 1 
S~t(r) -= ME v;. ~ { [(Nk) 2 -- E(Ark) 2] }2 

mk=l 

= [ER e -  (EiV2)2] [1 + O(1)] = O(r 2) (4.4) 

By Eq. (4.4), S~t(~) can be estimated by the ergodic average 
1 M - - 1  

S (M; 
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and we have 

1 2 E(Aa2(M; ~))2 ~_~ S (M; r) (4.5) 

Figure 4 shows the behavior of N(t) / t -  V(p_, p+) versus t for p = 
0.2, p+ =0.6,  and p = p +  =0.6. It is apparent  that the variance for 
p+ = p  =0 .6  is much larger, in agreement with the behavior for the 
dispersion of N(t), a2(t) ~, S. t 4/3, which is discussed below [for p _ = 0.2, 
p+ =0.6, we find ffz(t)~ SWA" t]. All data in Fig. 3 are in absolute value 
less then 2tr(t)/t, i.e., within two standard deviations. 

Fig. 5. 
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Behavior of a2(M; t), where M.t=8.106, p_ =0.3,  p+ =0.6,  L =  120. Upper  and 
lower curves correspond to SwA" t + 2 [$2(M;  t)/M] m. 
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We have computed S~(t)  and o-2(m; t) for p_ = 0.1, 0.2, 0.3, 0.4, 0.5, 
0.55, 0.6. We have taken L = 120, since in the upper range of p _ the results 
seem to be sensitive to the configuration length for lower values of L, in the 
chosen range of t: 5000 ~ t ~< 12,000. (This is further discussed at the end of 
the section.) The t range has been determined by the requirement that t 
should be large enough to be in the asymptotic region for all values of p .  
For p_ < 0.5 the asymptotic regime is actually reached for much smaller 
values of t. 

Figure 5 shows the behavior of a2(M; t) for p_ = 0.3 as a function of 
t. Data for different t correspond to different M, as M .  t is held constant, 
so that we could get estimates of a2(t) for different values of t in the same 
run. 

Figure 5 shows that results are consistent with the prediction 
a2(t) ~ S. t with S = Swg, where SwA is the weakly asymmetric prediction 
given by Eq. (1.2). We have checked that the same holds for p = 0.l, 0.2, 
0.4, and 0.5. 

For p_ =0.6 we should have long-time correlations, ~12) and rela- 
tion (4.4) cannot be expected to hold any more. The best straight line 
approximating our data in a In cr2(M; t) versus in t plot has a coefficient 
which differs from 4/3 by less than 1%. One can estimate S as the coef- 
ficient of the best linear function in t 4/3 which approximates our data 
a2(M; t), giving S = 0.67 (with a 1% rounding off). The coefficient should 
be compared with the approximate theoretical prediction of ref. 12, which 
is ~ l . 86[p (1 -p ) ]  2/3, or ~0.7. 

Though the theoretical significance of the bounds is doubtful, Fig. 6 
shows accordance with the cr2(t) x S'. t 4/3 prediction. 
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lower curves correspond to S - t _  2 [ $ 2 ( M ;  t)/M] uz. 
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Fig. 7. Behavior of the difference between S . t  4/3 and the computed dispersion. 

A few more words should be said about the choice of the interval 
length and of the averaging time. Clearly, time should be large enough to 
pick up the asymptotic behavior of the dispersion. But if it is too long, then 
the extra random effects coming from the border begin to be felt, and even- 
tually lead to a linear behavior in t for the dispersion. This effect is shown 
in Fig. 7, where the behavior of the difference between S . t  4/3 and 
the computed dispersion is shown for five different values of the interval 
length. 
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